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ABSTRACT: Due to uncontrolled release, gradual accumulation, low degradation rate,
and potential negative impact on human health, microplastics (MPs) pose a serious
environmental and healthcare risk. Thus, the spread of MPs should be at least carefully
monitored to identify and eliminate their main sources, as well as to provide a suitable
alarm in the case of MP concentration increase. Among various detection methods, surface-
enhanced Raman spectroscopy (SERS) poses a unique detection limit and the ability to
perform outdoor measurements without preliminary sample treatment. However, the
utilization of SERS for MPs detection is significantly limited for a few reasons. First, the
maximal SERS enhancement occurs in the so-called hot spots, where the MPs cannot
penetrate due to their size. In addition, the natural environment can produce a significant
spectral background, which blocks the microplastic characteristic signal. To overcome these
limitations, we propose a new alternative route for introduction of MPs into the plasmonic
hot spots, using in situ MP annealing and an advanced artificial neural network (ANN)
design, the Kolmogorov−Arnold transformer (KANformer, KANF). Polystyrene (PS) MPs were used as a model compound. We
have also demonstrated the potential versatility of our approach using different microplastics, such as polyethylene, polypropylene,
and polyethylene terephthalate. The proposed approach allows us to detect the presence of PS up to the single nanoparticle limit (in
the mL of analyzed solution) with a probability of above 95%, even under mixing with groundwater model matrices.
KEYWORDS: PS microplastic, porous plasmon substrate, annealing, SERS, artificial neural network, KAN

As a result of the increased use of polymeric materials, the
concentration of microplastics (MPs) in the environment has
increased significantly in recent years and has reached alarming
levels. The presence of MPs has been identified in a variety of
environmental matrices, including air, drinking water, seawater,
soil, and food.1−8 Because of their relatively small size and low
biodegradability, MPs can accumulate in the food chain and
cause several diseases in both animals and humans.9−12

Therefore, the concentration of MPs should be carefully
monitored in various media, ideally using simple, reliable
approaches. However, currently, there are no standardized
methods for the detection of MPs in water.13,14 Therefore, the
development of reliable identification and quantification
methods for MPs in the environment is urgently required.

The current methods for the detection of MP presence and
determination of their chemical composition encompass a
range of techniques, including optical and electron micros-
copies.15,16 Indeed, visual inspection methods can provide
information about the physical properties of MPs, such as their
size and shape, but cannot reveal their chemical composi-
tion.17,18 To overcome this limitation, pyrolysis-gas chroma-
tography−mass spectrometry (Py-GC-MS) or liquid chroma-
tography−tandem mass spectrometry (LC-MS/MS) can be
used.19−22 These methods offer high detection reproducibility

and sensitivity, but they are limited by expensive equipment,
complicated sample pretreatment, and skilled analytical
processes, making it impossible to perform express outdoor
detection.23 Thermal MP analysis coupled with mass
spectrometry and a variety of vibrational spectroscopic
techniques has also been employed.24,25 Because of their
simplicity and availability, vibrational spectroscopies such as
FTIR or Raman spectroscopy are the most employed methods
for the detection of MPs in water.14,16 However, for utilization
of spectroscopic methods, the samples need to be purified and
dried before measurement.26,27 Additionally, the sensitivity and
detection limits of FTIR and Raman spectroscopies are far
from adequate.28,29 In the case of Raman spectroscopy, lower
sensitivity can be significantly enhanced with utilization of
surface-enhanced Raman spectroscopy (SERS), which was also
proposed for MP detection.30

Received: March 14, 2025
Revised: May 16, 2025
Accepted: June 13, 2025
Published: June 25, 2025

Articlepubs.acs.org/acssensors

© 2025 The Authors. Published by
American Chemical Society

4983
https://doi.org/10.1021/acssensors.5c00846

ACS Sens. 2025, 10, 4983−4995

This article is licensed under CC-BY 4.0

D
ow

nl
oa

de
d 

vi
a 

PU
R

D
U

E
 U

N
IV

 o
n 

A
ug

us
t 2

2,
 2

02
5 

at
 0

0:
20

:1
7 

(U
T

C
).

Se
e 

ht
tp

s:
//p

ub
s.

ac
s.

or
g/

sh
ar

in
gg

ui
de

lin
es

 f
or

 o
pt

io
ns

 o
n 

ho
w

 to
 le

gi
tim

at
el

y 
sh

ar
e 

pu
bl

is
he

d 
ar

tic
le

s.

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Karolina+Kukralova"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Andrii+Trelin"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Elena+Miliutina"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Vasilii+Burtsev"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Vaclav+Svorcik"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Oleksiy+Lyutakov"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Oleksiy+Lyutakov"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acssensors.5c00846&ref=pdf
https://pubs.acs.org/doi/10.1021/acssensors.5c00846?ref=pdf
https://pubs.acs.org/doi/10.1021/acssensors.5c00846?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acssensors.5c00846?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acssensors.5c00846?goto=supporting-info&ref=pdf
https://pubs.acs.org/doi/10.1021/acssensors.5c00846?fig=agr1&ref=pdf
https://pubs.acs.org/toc/ascefj/10/7?ref=pdf
https://pubs.acs.org/toc/ascefj/10/7?ref=pdf
https://pubs.acs.org/toc/ascefj/10/7?ref=pdf
https://pubs.acs.org/toc/ascefj/10/7?ref=pdf
pubs.acs.org/acssensors?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acssensors.5c00846?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://pubs.acs.org/acssensors?ref=pdf
https://pubs.acs.org/acssensors?ref=pdf
https://acsopenscience.org/researchers/open-access/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


Recent research using SERS-based MP detection mainly
focuses on the sensitive quantification of MP concentration,
detection of various MP sizes, and classification of the MP
composition in the sample matrix.31−33 In a common
experimental approach, plasmon-active nanoparticles are
attached to the surface of MPs, and the detection wavelength
is adjusted to efficiently excite the plasmon resonance.30,34−37

However, considering the typical range of the plasmonic
evanescent wave, in this case, the spectral information can be
read from a distance of up to several nanometers and can

rather correspond to the molecules adsorbed on the MP
surface, as shown in Scheme 1A.38−40 As a result, the SERS will
rather reveal the composition of the MP surface layer, and
taking into account the ability of MPs to adsorb various
molecules, this analysis may not provide the real information
about the presence of the MPs or their composition. Similar
problems can be expected in the case of simple deposition of
MPs onto more sophisticated SERS substrates, composed of
patterned surfaces with locally excited hot spots providing
information from the 2−5 nm layer.41−44

Scheme 1. Representation of the Advantages of Our Worka

a(a) Common detection vs. detection proposed in this work. In a common case, the information is read from plastics surface and may not
correspond to the “Real” composition of the plastic. In contrast, in our detection proposal, the information is read from the bulk material, since PS
materials penetrate into plasmon-active pores. (b) Comparison of how many spectra are considered and how many of them carry information about
MP presence: common ANN (8 from 100 spectra, all spectra are equally weighted) vs. KANF (8 from 100, attention weighed). The weight of the
given spectrum is represented by its colour.
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To overcome this drawback and to tune SERS detection
toward more practical applications, several approaches were
considered. One of them is based on creation of a surface with
a specific shape, for example, with some cavities that can trap
the MPs.45−47 In this case, the analytical signal is produced by
“bulk” MP materials.

As an alternative, the deposited MPs can be transferred into
organic solvents, where their dissolution or swelling enables
better contact with the plasmon-active SERS substrate.41

Additionally, a pretreatment of the shell layer of MPs can be
used, meeting two goals simultaneously − to reveal the bulk
material and provide sites for plasmon-active nanoparticle
attachment.33,48,49 These approaches allow plasmonic hot
spots to be filled with the polymer material. However, they
cannot be considered universal, since it is impossible to select a
universal organic solvent or treatment agent for all the plastics
due to the differences in plastics’ polarity and the potential
presence of three-dimensional cross-linked networks in
particles.

In general, SERS meets the main requirements for portable,
simple, and fast outdoor detection, especially considering the
significant progress in the preparation of a simple and scalable
SERS substrate.50−52 However, taking into account the surface
sorption of MPs, the information read from SERS can lead to
an incorrect conclusion.53−55 In this work, we propose a simple
solution aimed at overcoming this drawback, i.e., gradual
heating of deposited MPs, which undergo glass transition, and
the softened material fills plasmon-active voids. Hence, the
signal from the bulk of MPs can be obtained in a simple and
scalable way (see Scheme 1). On the other hand, the other
molecules present in the real samples will also penetrate into
the SERS substrate’s pores and produce significant back-
ground. Thus, we additionally propose the utilization of an
artificial neutral network (ANN) design for evaluation of the
SERS spectra.56−62,69−72

It should be taken into account that the main challenge in
SERS detection of MPs is their insufficient interaction with
plasmonic hot spots, so that only a small portion of collected

spectra contains useful information about the presence of MPs
(as depicted in Scheme 1B). To address this issue, the NN
architectures (in particular, attention-based models, trans-
formers) which allow simultaneous processing of multiple
spectra, such as transformer-based models can be used.60,67,73

Transformer-like ANNs operate on an arbitrary number of
input spectra, combine information from all collected spectra,
and provide a conclusion on the examined sample as a whole.
By analyzing multiple spectra simultaneously, the accuracy of
SERS-KANF detection is enhanced significantly, and advan-
tages of the SERS and ANN techniques are fully utilized. In
particular, KANF allows us to consider particular SERS spectra
in an “attention weighted” regime, i.e., it makes decisions based
on more important spectra, i.e., those containing information
on the PS presence (spectra with “high attention weight“,
Scheme 1B) and partially ignoring the useless spectra (spectra
with low attention weight).

■ EXPERIMENTAL SECTION
Detailed descriptions of the materials used and the characterization
techniques are given in Supporting Information.

SERS Substrate Preparation. The SERS substrates were
prepared by a previously described method.74 Briefly, the p-type
silicon (100) wafer with low resistivity was cleaned and electro-
chemically etched in an HF:DMF solution (ratio 1:20) under the
following conditions: 2 mA, 15 min. The etched wafer was rinsed with
ethanol and dried. As the next step, the wafer was coated with a Au
layer using metal sputtering (direct current; Ar plasma; gas purity:
99.995%; pressure: 4 Pa; discharge power: 7.5 W; sputtering time:
300 s; current: 40 mA).

Sample Preparation. Polystyrene was used in the form of
microspheres (PS, latex, 2.5 wt % dispersion in water, diameter 0.5
μm, Alfa Aesar). Alternatively, 200 nm and 5 μm PS nanoparticles
from Thermo Fisher and Magsphere were used for control
experiments.

The LDPE, PP, and PET plastics were obtained from GoodFellow.
To decrease the size of polymer particles (i.e., to create microplastics),
the materials were subjected to mechanical grinding.

The SERS substrates were cut into 4 × 4 mm2 samples, onto which
10 μL of a solution containing PS (from 104 to 108 particles/L) was

Figure 1. A schematic representation of the experimental concept: (A) particular steps of sample preparation; (B) mapping the sample surface and
collecting Raman spectra; (C) data processing scheme in which the spectra are evaluated by KANF and the probability of MP presence in the
sample is calculated.
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drop-deposited. When stated, the solution also contained background
substances (HA, AA, TA, or their mixture at concentrations of 30 or
10 mg/L). The samples were heated to an elevated temperature (from
50 to 150 °C) to allow the polymer to penetrate the pores of the
SERS substrate and to take advantage of the plasmonic enhancement
of the signal from the polymer. At the end, the samples were cooled
and subjected to SERS measurements.

To prepare the real samples, water from outdoor sources was used
(in two different places in Prague − Hloubeťiń and Dejvice − and one
in a protected nature area in Brdy). The water was filtered through a
10 nm filter to remove potential microplastic nanoparticles. After that,
a microplastic suspension (PS, 500 nm) was added to obtain the final
concentrations of 105, 106, and 5 × 107. Some samples were left
without PS addition. In the next step, the samples were processed and
measured in a similar way to the model samples, with the addition of
humic organic acids.

■ RESULTS AND DISCUSSION
In this study, we propose the use of plasmon-active substrates
and surface-enhanced Raman spectroscopy in combination
with a novel neural network − Turbo Transformer KAN
(KANformer or KANF for brevity) − for the detection of MPs
in water, including simulated groundwater. A schematic
representation of the proposed experimental concept is given
in Figure 1. First, the porous silicon (pSi) surface was created
by electrochemical etching (Figure S1). To introduce plasmon
activity and enable SERS detection in pSi, the surface was
covered with a thin layer of Au (pSi@Au) using the previously
optimized approach.74 As a result, the SERS enhancement

factor obtained on these substrates reached a value ≈ 106

(Figure S2). In the next step, the PS microparticles (500 nm in
size − Figure S3) were mixed with water or simulated
groundwater and drop-deposited on the SERS substrate.
However, subsequent SERS measurements (Figure S4)
indicated no difference between PS particles deposited on a
flat Si surface or on the plasmon-active surface. In this case, no
SERS enhancement occurred. An even worse situation was
observed for a low concentration of PS particles, where the PS
response was screened by the SERS signal from the
“background” molecules (Figure S5 and related remarks in
the Supporting Information). We assumed that the PS
microparticles did not fill the pores in the plasmon-active
substrate, and thus, SERS enhancement did not occur. To
obtain a better response, annealing of the samples was
proposed before SERS measurements, with the aim of filling
the plasmon-active pores with the melted PS material (Figure
1A). After optimization of the annealing procedure and
determination of the optimal temperature and time, the
SERS database was collected (Figure 1B) and used for training
and validation of the KANF (Figure 1C). The composition of
the samples and the number of SERS spectra measured for
KANF are summarized in Table 1. Finally, the results of the
SERS-KANF approach were checked using blinded validation,
where samples with unknown PS concentrations were
measured by SERS and then subjected to KANF analysis.

The characterization of the SERS substrates is presented in
Figure 2. First, the SEM image (Figure 2A) indicates the

Table 1. Composition of Samples and Amounts of SERS Spectra Used for KANF Training and Validation
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porous structure of the surface, which can support the
excitation of local plasmons within the pores. The pore lateral
size is in the 50−110 nm range, so PS microparticles, 500 nm
in diameter (Figure S3), cannot directly penetrate the pores.
The excitation of localized plasmon(s) was confirmed by UV−
vis measurements performed in the back-reflected light. As is
evident from Figure 2B, the deposition of the Au layer on the
etched Si surface results in the appearance of a wide absorption
band located near 650 nm. This band should be related to local
plasmon excitation. In addition, the quasi-ordered surface
pattern (evident from SEM) will ensure the homogeneous

distribution of plasmonic hot spots, thereby ensuring the
homogeneity of the SERS response. This assumption was
additionally checked with the utilization of the model SERS
analyte, crystal violet (CV), deposited on the pSi@Au by spin
coating. Mapping of CV across 2 × 2 mm2 resulted in the
production of a relatively convergent SERS response (Figure
2C)�the deviation of the characteristic peak intensity did not
exceed 17%. In turn, the calculated SERS EF was found to be
106 (see Supporting Information for detailed information).
Surface wettability measurements were also performed using
water and glycerol drops. Surface interaction with different

Figure 2. Characterization of the SERS substrates: (A) SEM image of pSi coated with Au; (B) UV−vis spectra of pSi before and after the Au
deposition; (C) SERS mapping of CV response over the sample area, map of peak at 1618 cm−1; (D) wettability tests performed on pSi@Au with
utilization of water and glycerol and corresponding contact angles.

Figure 3. (A) DSC curves of PS microparticles; (B) SEM images of the PS microparticle before (left) and after (right) the annealing at 120 °C
(scale bar: 2.5 μm); (C) averaged SERS spectra as a function of annealing temperature; (D) dependence of the characteristic intensity of the PS
SERS peak (1001 and 1031 cm−1) on the annealing temperature; (E, F) material structure (gradual filling of pSi@Au pores with PS) used for
TDFD simulation and obtained distribution of the plasmon-related electric field.

ACS Sensors pubs.acs.org/acssensors Article

https://doi.org/10.1021/acssensors.5c00846
ACS Sens. 2025, 10, 4983−4995

4987

https://pubs.acs.org/doi/suppl/10.1021/acssensors.5c00846/suppl_file/se5c00846_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acssensors.5c00846/suppl_file/se5c00846_si_001.pdf
https://pubs.acs.org/doi/10.1021/acssensors.5c00846?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acssensors.5c00846?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acssensors.5c00846?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acssensors.5c00846?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acssensors.5c00846?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acssensors.5c00846?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acssensors.5c00846?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acssensors.5c00846?fig=fig3&ref=pdf
pubs.acs.org/acssensors?ref=pdf
https://doi.org/10.1021/acssensors.5c00846?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


polar liquids is expected to affect the penetration of nonpolar
PS materials inside the pores as well. The contact angles on
pSi@Au were found to be 78.9 ± 1.5° for water and 39.6 ±
4.9° for glycerol, indicating the slightly hydrophobic nature of
the surface, which can support the penetration of nonpolar PS
inside the pores of pSi@Au.

In the next step, we investigated the behavior of PS
microspheres on the porous SERS-active substrate. First, we
determined the glass transition of PS using differential
scanning calorimetry (Figure 3A). The obtained results
indicate that PS undergoes glass transition in the 100−120
°C temperature range, evident as an apparent peak of heat
consumption. At this temperature, the softening of PS particles
can be expected, which will be accompanied by the
deformation of the particle shape and subsequent pSi@Au
pore filling. This behavior of PS particles was confirmed by
SEM images of PS particles on the pSi@Au, where the
transition of the initially spherical PS particles to flat islands is
evident (Figure 3B). Such deformation of PS microparticles
can be associated with the filling of the porous structure by the
softened polymer. In situ SERS measurements as a function of
temperature are presented in Figure 3C,D. As expected, the
spectra from as-deposited microparticles (without heating)
showed no characteristic peaks, since the PS cannot be
triggered by local plasmon and thus cannot produce a SERS
signal. A similar situation was observed up to annealing at 80
°C, which is the temperature range “below” the glass transition
temperature. At 90 °C, we observed the appearance of
characteristic PS peaks, and their intensity increased with

annealing temperature up to 120 °C. Further temperature
increases resulted in only a slight decrease of the characteristic
peak intensity, probably due to partial polymer degradation.
So, taking into account the results presented in Figure 3, we
can suppose that the glass transition of PS leads to its softening
and gradual filling of plasmon-active pores, spatial overlapping
of PS and plasmonic hot spots, and, in turn, the appearance of
a SERS signal.

We also tested the annealing time required for reaching the
maximal SERS response. In particular, the results of time-
resolved experiments for different PS nanoparticle sizes are
presented in Figure S6. As is evident, the use of annealing leads
to a gradual increase in the SERS signal intensity, which
correlates with the filling of the plasmon-active pores. After a
certain amount of time, the peak intensity reaches a plateau
and does not increase anymore. This phenomenon can occur
for two reasons: all plasmon-active pores are filled (in the case
of excess polymer material) or all the material is already in the
pores (in the case of fewer PS nanoparticles). The typical time
required to reach the SERS plateau is in the range of 20−30
min, which is not surprising, since polymers are quite viscous
materials. In turn, the saturation time is a function of the
nanoparticle size used (this can be associated with both the
molecular weight of the material and its thermodynamic
stability, determined by the surface-to-volume ratio). In turn,
annealing at a higher temperature (for a longer time) results in
the decrease of SERS intensity. This effect can be associated
with the gradual degradation of the material (annealing was
performed in air) and the loss of its mass (the results of the

Figure 4. (A, D, G) DSC curves of LDPE, PP, and PET microparticles; (B, E, H) averaged SERS spectra as a function of the annealing temperature
of corresponding MPs; (C, F, I) dependence of the characteristic peak intensity of SERS of the polymer (1328 for LDPE, 1328 and 1530 for PP,
and 1608 and 1732 cm−1 for PET) on the annealing temperature.
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control gravimetric tests are shown in Figure S7), both leading
to a lower SERS intensity.

For further confirmation, we performed a range of numerical
simulations (Figure 3E,F) to prove the overlap of plasmon-
related evanescent waves and PS gradually penetrating into the
pores. The simulation of the pristine plasmon-active substrate
(with deposited PS spherical particles) indicates that the main
plasmon energy is concentrated inside the pores. In this case,
the interaction of plasmonic hot spots with the as-deposited PS
particles is minimal (Figure 3E,F, top line), a finding that
corresponds well with the absence of a SERS signal. However,
when the pSi@Au pores are filled with PS after annealing,
efficient overlap of the plasmon wave and PS materials occurs,
which results in the production of an intensive SERS signal
(also correlating well with temperature-dependent SERS
measurements).

To further demonstrate the ability to introduce the MP
material inside the plasmonic hot spots, we performed
additional experiments with the utilization of PS particles of
different sizes and several alternative types of MPs. First, the
results of PS with 5 μm and 200 nm were analyzed using a
similar approach, i.e., sample heating and subsequent SERS
analysis (Figure S8). The obtained results were similar to the
previously observed ones − close to zero signal without
annealing and a gradual increase of the characteristic band
intensity with time under annealing at 120 °C.

In turn, results of experiments performed with utilization of
low-density polyethylene (LDPE), polypropylene (PP), and
polyethylene terephthalate (PET) microplastics are presented
in Figure 4. In this case, a gradual increase of the characteristic
SERS peak intensity with the increase of annealing time was
also observed. Comparison of the obtained results with DSC
curves indicates good agreement between the glass transition
temperature and the peak intensity increase. So, the proposed
approach can be used even in the case of alternative MPs,
where the MP heating directly on a mesoporous SERS
substrate allows to fill plasmonic hot spots and to detect their
presence. In other words, the proposed approach is universal
and can be used for a whole range of plastics without the need
for preliminary processing. In the next step, we mainly focused
on the utilization of the SERS-ANN approach for PS (to keep
the article to a reasonable length).

The concentration dependencies of averaged SERS spectra
(measurements were performed at 30 randomly chosen points,
and spectra were subjected to baseline corrections) are
presented in Figure 5A for PS microspheres deposited from

pure water and in Figure 5B for spectra from PS samples in
simulated groundwater containing a mixture of molecules from
3 natural substances: humic acid (HA), tannic acid (TA), and
alginic acid (AA). Spectra were measured after annealing at the
optimal temperature (120 °C) and evaluated manually. In the
first case (Figure 5A), a good SERS response was observed for
108 and 107 particles/L concentrations. The characteristic
peaks of PS are also well evident even with a concentration of
105 particles/L, but no characteristic peaks were observed for a
104 particles/L concentration. However, the use of the
addition of natural substances (i.e., previous mixing of PS
with HA, TA, and AA) results in a significant worsening of the
SERS performance. The characteristic PS peaks were screened
off by the spectral background (as well as spectral averaging),
especially in the case of lower PS microparticle concentrations.
In particular, characteristic PS peaks are noticeable only in the
case of the highest concentration, 108 particles/L, and are
difficult to distinguish for lower concentrations. Indeed, in this
case, the manual analysis of spectra can result in operator error
and incorrect conclusions about the presence and concen-
tration of PS microparticles. Furthermore, only a part of the
SERS spectra contains signals from PS, complicating the
identification of PS using averaged spectra or measurements at
random points (Figure S9). Moreover, simple spectral
averaging results in the almost complete disappearance
(especially in the case of simulated real samples with the
addition of humic acids) of the characteristic PS signal
(Figures S10−S12). For this reason, we utilized an artificial
intelligence-based approach for subsequent spectral analysis,
with the aim of enhancing the detection limit and maximally
simplifying and automating the detection procedure.

At this stage, it should be noted that the utilization of ANN
can allow for the analysis of sophisticated spectra and
determine the presence/absence of targeted molecules despite
peak overlapping and interference. On the other hand, the
common ANN makes a decision based on a single spectrum.
Thus, the utilization of ANN assumes a more or less
homogeneous distribution of the targeted compounds across
the SERS surface and the presence of their characteristic
spectral features in most of the spectra used. However, such a
situation is uncommon in the case of MPs, since they are
localized only in a few places across the SERS substrate. Thus,
their characteristic spectral features will be present only in a
small subset of the spectra collected from the given sample,
especially in the case of low MP concentrations. Indeed, our
first attempts with the utilization of ANN were far from ideal

Figure 5. Averaged SERS spectra (conditions: 785 nm, 2 mW, 10 s, 20 average), measured as a function of PS microparticle concentration,
deposition was performed from (A) pure water and (B) simulated groundwater accordingly (corrected baseline). Measurements were performed
after annealing at 120 °C, at 30 randomly chosen points, and the results are given as an “averaged” spectrum.
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one (Figures S13 and S14 and a related remark in Supporting
Information). We decided to proceed with the transformer
architecture, incorporating newly developed KAN layers, which
were found to significantly improve training stability, which is a
known problem for classical transformers in low-data
regimes.75 In this case, KANF is able to draw conclusions
from multiple spectra, dynamically assigning weights to them
depending on their relevance, which is ideal for the MP
detection task, because only a fraction of all spectra contain
useful information about the PS presence.

The design of the proposed ANN is presented in Figure 6A.
Briefly, KANF combines a convolutional feature extractor with
a Transformer decoder, which effectively merges information
from multiple input spectra, followed by the KAN classification
layer, outputting information about MP presence in the
sample. The feed-forward counterpart of the attention block is
replaced with a KAN layer. The additional motivation for using
KAN layers instead of feedforward layers is that they have been
found to improve network performance and training stability
while having fewer parameters (a detailed comparison between
the classical Transformer and KANformer is provided in the
Supporting Information). Moreover, KANF allows to estimate
the SERS spectral database in the attention-weighted regime,
i.e., it mainly takes into account the spectra containing the
SERS response of PS, which is significant since only part of the
SERS substrate is coated with PS.

The KANF was trained using the spectra database listed in
Table 1 and included the SERS spectra measured from the
samples deposited by PS microplastic solutions in pure or
simulated groundwater and subjected to annealing. The total

number of the samples prepared and used for KANF training
and validation was 211. The main results of the SERS-KANF
application are presented in Figure 6B, where the determi-
nation of the presence of PS by SERS-KANF is plotted as a
function of the concentration of particles (concentration of x
particles per sample) and the number of SERS spectra
collected from one sample. As is evident, for a higher PS
concentration, the detection accuracy immediately reached a
value of 1.0, despite the number of the spectra collected.
Apparently, in this case, almost all of the sample surface was
covered with the PS material, softened particles penetrated into
pores, and the measurement of 1−5 spectra was enough to
immediately determine the presence of MPs. With a decrease
in PS concentration, the expected number of MPs per scanned
area decreased, and a larger number of collected SERS spectra
was required for the identification of PS presence. For the
expected 50−100 nanoparticles (corresponding to 5 × 106−
107 particles/L PS concentration), the collection of 8−10
spectra was required for a correct decision on the presence of
MPs. In turn, for a very small PS concentration (5 × 105−106

particles/L), where only 5−50 particles are deposited on the
entire sample surface, the SERS-KANF can clearly detect the
presence of PS but requires a higher number of spectra (up to
25−30). In this case, even a single PS nanoparticle can be
detected on a SERS substrate using the SERS-KANF
combination. A further decrease in the PS concentration in
the drop-deposited sample results in the deposition (on
average) of only one particle on one of 10 or even 100
substrates, and, as could be expected, detection of MPs using
SERS-KANF is useless in this case. Thus, a concentration

Figure 6. (A) Schematic representation of the KANF design used. During the training phase, a random sample from the training set S1...Sn was
selected. A random subset of spectra of the selected sample were used as input to the KANF, which outputs probability of MP presence; (B) results
of SERS-KANF approach utilization, in terms of the accuracy dependency on the number of PS microparticles per scanned SERS area (averaged)
and the number of SERS spectra collected.
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above 105 particles/L (or at least the presence of one PS
particle on the SERS scanned area) can be considered the
detection limit of the present approach. It should also be noted
that when the expected number of particles is 1, the probability
of actually having at least one particle on the sample is
approximately 0.63. If it happens that the particle is absent in
the sample labeled as a positive one, the sample becomes the
mislabeled one. Thus, a higher number of samples and spectra
are required for a correct decision on PS presence. In the case
of 0.1 PS concentration, the Poisson modeling shows that over
90% of the substrates would have no particles at all. Thus,
making a correct decision about PS presence with higher
accuracy is almost impossible in this case. In the absence of PS
microparticles, we reached the correct answer “NO” for
measurements of approximately 15−20 spectra in all cases,
including the separately prepared samples with different
combinations of AA, TA, and HA molecules.

Finally, we performed a range of blinded experiments, where
separately prepared samples with or without addition of PS
microparticles were measured (30 spectra from each of three
substrates for each sample were measured) and subjected to

SERS-KANF analysis. Blinded experiments also included a few
real samples, where the groundwater samples were randomly
collected outdoors and mixed with PS nanoparticles. The
composition of the samples was previously unknown to the
KANF, and it had to answer the question if the MPs were
present or not (the probability of output was regulated at p =
0.5, which means that the output of KANF < 0.5 was
interpreted as “NO”). The results of the blinded validation
approach are summarized in Table 2. We received the correct
answer “NO” for all samples without the addition of PS. We
also received the correct answer “YES” for samples with
concentrations of 107, 106, and 15 × 105 particles/L of PS
particles, corresponding to an average deposition of 100, 10,
and 15 particles per SERS scanned area. Moreover, similar
results were obtained in experiments with real samples
(addition of PS to groundwater samples), where successful
detection of MPs up to a concentration of 106 particles/L was
demonstrated. In turn, the use of prefiltered water showed the
absence of microplastics (i.e., the absence of false positive
results). However, for 105 PS particle concentration (1 or 0
particles per scanned area, due to some randomness in

Table 2. Results of the SERS-KANF Evaluation of Blind Samples with Previously Unknown Composition

Table 3. Comparison of Our Results and Approach with Those Previously Published

Microplastic SERS substrate Pretreatment method Reference

PS (PE not
successful)

AuNPs addition of an aggregating agent Mikac et al.35

PS, PET, PC AuNPs on the
gas−liquid
interface

MPs were introduced into the oil phase → the complete evaporation of the oil phase → the MP-
AuNPs are measured

Chen et al.76

PS AuNUs (urchin-
shaped)

adding NaCl as a coagulant Lee et al.34

PS AuNSs@Ag@AAO
(nanostars)

− − − Le ̂ et al.53

PS (PMMA way
less efficient)

Klarite rinsed in a H2O2 solution (30%) for 24 h → filtered with a glass fiber filter → rinsed with deionized
water → concentrated by heating to 60 °C for 24 h → transferred to Klarite substrates

Xu et al.33

PS, PE, PP AgNPs − − − Lv et al.30

PS AgNPs KI as a coagulant and cleaner to remove surface impurities Hu et al.31

PS AgNPs MgSO4 as a coagulant, drying at 60 °C Zhou et al.77

PS AgNW/RC the analyte solution was vacuum filtered onto hydrogel nanocomposites, then peeled off the filter
membrane, and dried (60 °C for 1 h)

Jeon et al.78

PS, PE, PMMA,
PTFE, nylon,
PET

AgF@AgM@C10 − − − Guselnikova et
al.73
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deposition), the incorrect answer “NO” was also received,
which is well correlated with the results presented in Figure 6B.

We also compared our results with the previously published
ones (Table 3).35−73 As can be seen, most of the works used
model systems that can give good results in the case of
laboratory studies but can hardly be used for the analysis of
real samples, in which the SERS signal will be obtained from
the contaminated surface of the plastic (thus not carrying
information about the composition and presence of plastic).
Alternatively, several methods of MP pretreatments were
proposed. For example, methods such as MP agglomeration,
dissolving, or surface treatment using oxidizing agents can be
mentioned. However, these approaches are based on the use of
sufficiently toxic reagents, with related prolongation of the
analysis time and limited specificity (for example, not all
plastics dissolve in the same universal solvents). On the other
hand, in our research, there is no need for pretreatment of MPs
or their dissolution. Moreover, our method is relatively fast and
universal, as demonstrated in Figures 4 and S6.

In summary, in this work, we combine the highly
homogeneous SERS substrate with an alternative approach
for the introduction of plastics into the plasmonic hot spots.
Such an approach allows us to detect a very low concentration
of microplastics. However, even in the case of low
concentrations, some uncertainty can occur since only a
small part of the plasmonic hot spots is occupied by the
polymer material. To overcome this drawback (and to avoid
additional steps of sample purification), we propose the
utilization of advanced KANF design. Unlike classical ANN,
which analyzes a whole array of spectra, KANF analyzes a
random sample of spectra with a variable composition. We also
estimated the time required for SERS-KANF analysis (after the
preliminary KANF training and validation). Drop deposition
and heating/cooling of the samples took 10 min. The
subsequent collection of 30 spectra (the number of spectra
was determined from Figure 6B) takes approximately 25 min.
The final evaluation by KANF takes a very short time: less than
1 s. The proposed SERS-KANF combination takes approx-
imately 35−40 min and can determine even a single PS particle
on a SERS-active surface, without the need for any preliminary
sample treatment, separation, or purification.

■ CONCLUSION
In this work, we propose the SERS-ANN approach (in
particular, SERS-KANF) for the detection of microplastic
presence. The detection was performed with the utilization of
simple PS nanoparticles dispersed in pure water and PS mixed
with simulated organic molecules commonly present in
groundwater. Unlike the previously published approaches,
the PS efficiently entered “inside” the plasmon-active pores
created on the porous Si surface and was subjected to strong
plasmon triggering. This was achieved by heating the PS
sample at the optimized temperature. The heating immediately
resulted in a significant increase in the SERS response from the
PS microparticles. The design of KANF was optimized to meet
the main detection goal, taking into account that only part of
the substrate is covered by deposited PS, and thus only a
limited number of SERS spectra can contain characteristic PS
signals (especially in the case of lower number of PS particles).
After collecting the SERS database and performing appropriate
KANF training and validation, we demonstrated that the
detection of even a single PS nanoparticle on a SERS-active
substrate is possible. Moreover, the successful determination of

single (or few) PS nanoparticles was demonstrated independ-
ently in the presence of background molecules from simulated
groundwater. We also demonstrated that detection accuracy
increased significantly with an increase of the SERS spectra
number and found the optimal number of spectra that should
be collected for the detection of a single PS particle. These
results were further validated with utilization of blinded,
independently prepared samples with a composition previously
unknown to KANF. Finally, it should be noted that SERS-
KANF-based PS detection is easy and fast, and the total time
required for the analysis is only 35 min.
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